
Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

906

PRADA: A Practical Model for Integrating Computational
Thinking in K-12 Education

Yihuan Dong[1], Veronica Cateté[1], Robin Jocius[2], Nicholas Lytle[1], Tiffany Barnes[1],

Jennifer Albert[2], Deepti Joshi[2], Richard Robinson[2], Ashley Andrews[2]
[1]North Carolina State University, Raleigh, North Carolina

[2]The Citadel, Charleston, South Carolina

{ydong2,vmcatete,nalytle,tmbarnes}@ncsu.edu

{rjocius,jalbert,djoshi,rjmr,ashley.andrews}@citadel.edu

ABSTRACT
One way to increase access to education on computing is to inte-

grate computational thinking (CT) into K12 disciplinary courses.

However, this challenges teachers to both learn CT and decide how

to best integrate CT into their classes. In this position paper, we

present PRADA, an acronym for Pattern Recognition, Abstraction,

Decomposition, and Algorithms, as a practical and understand-

able way of introducing the core ideas of CT to non-computing

teachers. We piloted the PRADA model in two, separate, week-long

professional development workshops designed for in-service mid-

dle and high school teachers and found that the PRADA model

supported teachers in making connections between CT and their

current course material. Initial findings, which emerged from the

analysis of teacher-created learning materials, survey responses,

and focus group interviews, indicate that the PRADA model sup-

ported core content teachers in successfully infusing CT into their

existing curricula and increased their self-efficacy in CT integration.

CCS CONCEPTS
• Social and professional topics → Computational thinking;

K-12 education;

KEYWORDS
Professional Development; Computational Thinking

1 INTRODUCTION
Computational Thinking (CT) is the thought processes involved in

formulating problems so their solutions can be represented as com-

putational steps and algorithms [1], which often include problem

decomposition and abstract reasoning. As computational technolo-

gies are becoming a more integral part of our lives and workforce, it

is important for students to develop these CT skills early and with

equal opportunity in order to prepare them for their future careers.

Teaching CT in core classes has the advantage to avert the selection

bias present in elective or after school programs [21]. However, this

challenges us to effectively train teachers to be able to understand

CT concepts, identify CT components in their lessons, and foster a

CT mindset among their students.

After Wing re-introduced the concept of CT in 2006 [25], a num-

ber of attempts have been made to define what CT is at various

granularities [2, 9, 22, 24]. However, many definitions include Com-

puter Science terms (automation, parallelization, etc.) that are not

only hard to explain in any K-12 classroom, but are also difficult to

understand without actual “coding" activities, which not all teach-

ers have the resources or knowledge to facilitate. Furthermore, CT

professional development (PD) without intentional content contex-

tualization fails to offer affordances for how teachers can utilize

CT to support disciplinary learning goals. There is a need for a CT

definition that teachers can effectively use to communicate CT to

students in core classroom settings. Such a CT definition needs to

be:

ACM Reference Format:

Yihuan Dong, Veronica CatetÃľ, Robin Jocius, Nicholas Lytle, Tiffany Barnes,

Jennifer Albert, Deepti Joshi, Richard Robinson, Ashley Andrews. 2019.

PRADA: A Practical Model for Integrating Computational Thinking in K-12

Education. In Proceedings of the 50th ACM Technical Symposium on Com-

puter Science Education (SIGCSE ’19), Feb. 27–Mar. 2, 2019, Minneapolis,

MN, USA. ACM, NY, NY. 7 pages. https://doi.org/10.1145/3287324.3287431

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00

https://doi.org/10.1145/3287324.3287431

(1) understandable by K-12 teachers, the majority of whom have

limited Computer Science knowledge

(2) integratable into existing curricula, and

(3) generalizable to any discipline

In this paper, we present PRADA (an acronym for Pattern Recog-

nition, Abstraction, Decomposition, and Algorithms) as a practical

and understandable way of introducing the core ideas of CT to

non-computing teachers in order to support them in infusing CT

into their curricula. We piloted PRADA as part of a summer PD on

infusing CT into middle and high school content area courses. Dur-

ing the PD, we taught and encouraged teachers to both recognize

the PRADA elements that already exist in their courses, and also

helped them to create digital artifacts in a block-based program-

ming language to facilitate teaching PRADA. We approached the

professional development with the following preliminary questions:

(1) Were the teachers able to create computational artifacts?

(2) Were the teachers able to correctly identify the PRADA com-

ponents in their artifacts?

mailto:permissions@acm.org
mailto:permissions@acm.org
https://doi.org/10.1145/3287324.3287431

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

907

(3) Did teachers show an increase in self-efficacy towards un-

derstanding and teaching PRADA?

(4) Were there any interesting trends in teacher created artifacts

and feedback?

This paper presents our preliminary results which emerged from

interpretations of daily teacher feedback, semi-structured inter-

views, and summative PD surveys, but focused primarily on the

teachers’ products: lesson plans and block-based programs. We

begin with an overview of CT frameworks and pedagogical strate-

gies for CT PD. Then, we make the case for the use of PRADA

as an understandable way of introducing CT to non-computing K-

12 teachers. The next part presents the methodology used for this

investigation and continues on to show evidence from the teacher

artifacts indicating exemplars of successful implementa- tions of

PRADA. We conclude with a discussion of our findings and

recommendations for future CT teacher professional development.

2 LITERATURE REVIEW
In the last decade, the concept of Computational Thinking has

undergone several reformations. Wing has moved CT from the

concepts fundamental to computer science (solving problems, de-

signing systems and understanding human behavior [25]), to the

“thought processes involved in formulating problems and their so-

lutions so that the solutions are represented in a form that can be

effectively carried out by an information-processing agent" [24].

The important distinction here is that the solutions can be carried

out by another agent effectively.

In 2011, the International Society for Technology in Education

(ISTE) and Computer Science Teachers Association (CSTA) came

together to create an operational definition of CT that could pro-

vide a framework and set of vocabulary terms for all K-12 teachers

[9]. They describe CT as a problem-solving process that includes

formulating problems, logically organizing data, representing data

through abstractions, automating solutions, reflecting on the effi-

ciencies of possible solutions, and generalizing and transferring this

process to a variety of problems. However, while these ideas are

general enough to apply to any discipline, there remains a lack of

clarity with regard to how teachers can use CT to support content

learning and a need for more concrete models and supports for

classroom integration.

Several attempts have been made to map CT specifically to other

subject areas. Weintrop et al. have developed a taxonomy of CT

practices for both Math and Science disciplines drawing on major

connections to modeling and abstraction [21, 22]. Each of the four

CT skill sets identified by Weintrop and his team evolved from

reviews of literature and common coursework, as well as interviews

and discussions with K-12 educators and researchers. Both Data and

Information skills, as well as Modeling and Simulation skills, map

directly to STEM practices. The new skills, Computational Problem

Solving and Systems Thinking, focus more directly on practices

deliberately expressed in Computer Science, such as debugging,

assessment of solution effectiveness, and thinking in levels, which

might be difficult for K-12 teachers to easily recognize within their

own curricula or unpack for students.

Similarly, the vocabulary terms used in the early CT framework

identified by the National Research Council [4, 7] present defini-

tional challenges for teachers. In this framework, in addition to data

manipulation and simulations, both parallelization and automation

are used as high level concepts. Although these last two skills are

useful for software engineers, these may be difficult or impractical

to integrate into middle and high school courses.

In order to demystify the terminology around CT [4], a simpli-

fied skill set and vocabulary has been defined by k12cs.org and

further modified by Google Education [10, 16]. K12cs.org focuses

on: Defining problems; developing and using Abstractions; Cre-

ating computational artifacts; and Testing and refining artifacts.

Although simplified, not all classrooms have ready access to com-

puting technology, so the latter half of the CT skills can be difficult

for teachers to implement. Instead, Google focuses on Problem

decomposition, Pattern recognition, Abstraction, and Algorithm

design [10]. As stand-alone or intermixed concepts, these can be

implemented into other subjects by simply modifying existing les-

son plans instead of needing to create something entirely new. An

example of each concept is listed below [4]:

Pattern Recognition in Social Studies - identify trends in data

from historical or social statistics

Abstraction in Science - simplify models of Newtonian mechanics

or solar systems

Decomposition in English/Language Arts - write outlines, iden-

tify arguments

Algorithms in Math - list steps for doing long division or integral

calculus

Although the historical trend in CT literature has been on identi-

fying key concepts and a core definition [12], there is a new trend ex-

ploring how to teach these concepts to in-service teachers [5, 19, 26].

As noted by Margolis [17] and Yadav [26, 27], teachers will not be

able to provide their students with quality CT instruction until the

teachers themselves understand the construct and feel confident

about its integration in their curriculum. If teachers do not feel con-

fident in their abilities to teach computational thinking, students

may have negative experiences in learning the concept [13].

Teachers’ thinking and practice are understood to be shaped in

large part by continued professional learning [3, 8]. Recent research

by Bower et al. indicates that “teacher’s computational thinking

capabilities are relatively malleable" and professional development

may sufficiently impact teachers’ understanding of CT. According

to Bower’s study, teachers can learn CT concepts in a short amount

of time, building self-efficacy [5]. Furthermore, a 2018 survey by

Sands et al. found that there were no differences on teachers’ con-

ceptions of computational thinking based upon either the content

area (STEM vs. non-STEM) or grade level (primary vs. secondary)

[19], making CT PD a level learning field for in-service teachers.

However, there were some limitations to Bower’s study: CT was

taught in a stand-alone context not situated in the teachers’ own

domains. While teachers’ self-efficacy and conceptual understand-

ings of CT increased after the PD, teachers expressed concern over

how to integrate CT into their classrooms [5]. Sands’ study sug-

gests that in order to successfully teach CT, training needs to be

content-specific and focused on how to integrate computational

thinking ideas into existing curricula. Specifically, teachers need

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

908

to be introduced to computational thinking in a way that meets

their disciplinary learning goals and fits within their pedagogical

practices [19] rather than being an “instructional add-on in the

K-12 curriculum" [11].

3 DEFINING CT AND PRADA

3.1 What is PRADA
Google’s “Computational Thinking for Educators" course identifies

Decomposition, Pattern Recognition, Abstraction, and Algorithm

design as the key elements that make up Computational Thinking

[10]. Even though CT is essential to programming, it can be used

to facilitate problem solving across all disciplines, not strictly Com-

puter Science. There is no strict ordering of these elements, and

each element can be taught separately. We reordered these elements

into PRADA as a mnemonic device to help teachers and students

remember the terms. We also revised Google’s CT definition, as

shown in italics, to make it more adaptable to different disciplines:

Pattern Recognition observing and identifying patterns, trends,

and regularities in data, processes, or problems

Abstraction identifying the general principles and properties that
are important and relevant to the problem

Decomposition breaking down data, processes, or problems into

meaningful smaller, manageable parts

Algorithms developing step by step instructions for solving [a

problem] and similar problems

3.2 Why PRADA
There are several advantages in using PRADA as a way of in-

troducing CT. The four elements are detailed enough to capture

the essence of CT defined in previous frameworks. We emphasize

PRADA as a mindset, not bounded by content area or tools, that

helps people solve problems in a systematic and generalizable way.

We consider coding to be an important activity that can facilitate

the understanding of PRADA, but teaching PRADA does not require

teachers to create coding activities or artifacts for their students.

PRADA can also be taught with various unplugged activities. Figure

1 shows a mapping of PRADA compared to other popular CT compo-

nents. PRADA strips out the Computer Science/coding specific com-

ponents described elsewhere and retains the parts that can be easily

generalized and integrated into different disciplines within K-12.

Non-CS/coding specific components that are left out, namely Data

& Information and Modeling & Simulations, can still be explained

with PRADA, as analyzing data generally involves abstracting use-

ful information from recognized patterns, and simulation generally

involves decomposing a phenomenon into parts/abstractions, and

creating algorithms to mimic observed or hypothesized processes.

Additionally, PRADA maintains a meaningful difference between

elements such that each element in the PRADA model represents a

distinguishable process during problem-solving and can be taught

and explained in separate class activities.

PRADA also gives teachers a set of memorable keywords to con-

vey to their students when teaching CT. A previous research study

that involved implementing CT in middle school science classrooms

shows that the teachers had trouble mapping CT concepts to their

teaching material. As a result, the teachers requested a concrete set

of names of the key concepts so they could teach and reinforce the

Figure 1: A mapping of popular CT components

terms in each day’s activity [6]. PRADA serves as a manageable and

memorizable set of keywords that teachers can explicitly introduce

and reinforce in their daily classes.

In this paper, we argue that the PRADA model can support K-

12 teachers’ exploration of how to integrate CT into disciplinary

classrooms. Our goal is to help teachers realize that many of the

pedagogical practices and materials that they already use within

their classrooms can address or provide distinct affordances for

integrating the PRADA model. However, to do this, teachers need

practice and support to recognize and apply CT elements to their

own disciplinary content (see examples in section 2). It is with this

in mind that we organized our Infusing Computing professional

development program to provide opportunities for teachers to work

together both within and across disciplines and to learn to create

programs with extensive support from computer scientists.

4 METHODS
During two intensive, 5-day Infusing Computing PD workshops

in North and South Carolina in Summer 2018, we engaged 116

middle and high school teachers in designing plans to integrate

computational thinking into their classrooms. We designed each

day of the workshop to include: Snap! programming bootcamps,

content area focused PRADA sessions, and collaborative develop-

ment sessions, which culminated in the development of a learning

segment that integrates CT into each teacher’s disciplinary class-

room instruction. Specifically, the PRADA session began with a

whole-group discussion of the PRADA element of the day in which

teachers discussed concrete examples of how their existing teach-

ing practices included PRADA elements, followed by examining

and analyzing, in small groups, the sample classroom artifacts cre-

ated by the research group. In the development sessions, teachers

worked collaboratively in either school or content teams to make

their projects. Although teachers were encouraged to create learn-

ing segments that allowed students to practice coding, this was not

a requirement. Instead, teachers had the flexibility to build lessons

around CT using the resources available in their classrooms. Typical

learning segment components included a Snap!-like prototype, a

learning plan that explicitly identified how PRADA elements were

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

909

addressed, and supplemental pedagogical materials (e.g., graphic

organizers, templates, slideshow presentations, coding guides).

We recruited Math, Science, Social Studies, and English/Language

Arts (ELA) content area teachers for grades 6-12 in both states to

attend individually or to bring teams from their schools. There

were 58 teachers in each of our two workshops, PD1 and PD2, with

teachers from several content areas as shown in Table 1. Although

many teachers attended in teams, teachers could choose to work

individually or with other self-selected teams within the workshop

to create learning segments that would be meaningful in their own

classrooms. Overall, there were 116 people in 40 teams across the

two weeks, with teams ranging in size from one to as many as 6

teachers.

Table 1: Teacher participants and project by discipline

 Math Science Humanities Interdisciplinary

PD1 Teachers 21 24 13

 PD1 # Projects 4 11 4 2

PD2 Teachers 20 19 17

 PD2 # Projects 7 7 3 2

PD sessions were led by members of the research team with sup-

port from local area teacher leaders with experience in integrating

computing into their curricula. Taking on the roles of participant-

observers [23] gave members of the research team the opportunity

to interact with participants on a regular basis and to work sys-

tematically to understand the teachers’ developing understandings

of the PRADA model, as well as their beliefs and expectations re-

garding integrating CT into their classrooms. We believe that these

roles allowed us important insights into the data analyzed in this

paper, particularly given that the goal of this work is the evaluation

of teachers’ understanding and implementation of PRADA, rather

than their perceptions of the PD or facilitators.

4.1 Data Collection & Analysis
Primary sources of data for this analysis included teacher products

(block-based programming prototypes, learning segment plans, and

related artifacts), pre- and post-PD surveys, daily reflections, feed-

back forms for teacher presentations, and audio-recorded teacher

interviews. Data analysis proceeded in three overlapping and re-

cursive phases: systematic review and coding of learning segment

artifacts, purposive sampling and analysis of focal learning seg-

ments, and triangulation of data sources.

During the first phase of analysis, the first author, an expert

who participated in the design and the implementation of the PD,

reviewed the learning segments and the block-based programming

project files of all the collaborative teacher submissions (n = 40).

While many of the products have interdisciplinary connections, of

the 40 products, 11 were primarily designed for math, 18 for Science,

7 for Humanities (Social Studies and English Language Arts), and 4

were purposefully designed for all disciplines. Products included a

form where teachers were to elaborate how their planned lessons

would target each PRADA concept. Each submission was reviewed

to determine whether or not the interpretation of PRADA in the

context of the lesson plan agreed with what we intended the teach-

ers to learn. Based on our expert review, most teams successfully

implemented PRADA as 32.5% of the projects had a correct expla-

nation and implementation for all 4 of the PRADA elements, and

32.5% of the projects had a correct explanation and implementation

for two or more elements of PRADA. Of the remaining 13 projects,

6 identified PRADA elements by name, 4 incorrectly identified

PRADA elements, and 3 made no mention of PRADA.

In the second phase, we used purposive sampling to select four

case studies representing math, science, humanities, and interdisci-

plinary products to analyze evidence of teachers’ understandings

of the PRADA model within their learning segments. Purposive

sampling is “based on the assumption that one wants to discover,

understand, or gain insight; therefore one needs to select a sample

from which one can learn the most" [18]. The case studies selected

were based on the following criteria: the lesson plan is complete,

the learning segment or supporting document clearly describes

how each of the four elements of PRADA is identified and used in

the lessons, and the block-based coding prototypes were completed

with a clear indication of the presence of some PRADA elements

(e.g. proper use of the repeat block demonstrating understanding

of pattern recognition).

During the third and final phase of analysis, we focus on partici-

pant feedback. The project team examined feedback from presenta-

tions, survey results, and teacher interviews to triangulate findings

across sources using the constant comparative method [20].

5 CASE STUDIES
We report our preliminary findings from the PRADA themed Infus-

ing Computing PD using four exemplary projects. We intend these

case studies to demonstrate how teachers successfully identified

and infused CT into their own domains, as well as to highlight

how teachers were able to bridge domains using PRADA. After we

present a description of each product, we list the teacher expla-

nations for integrating PRADA in quotes, and we offer our own

interpretations of the product’s relation to each PRADA element in

italics. We also discuss how these exemplars illustrate opportunities

for additional support that may be needed for teachers struggling

with some elements of CT.

5.1 Interdisciplinary Exemplar: Life in the

Middle Ages
One interdisciplinary group of high school teachers made a his-

torical puzzle game for students to explore life in the Middle Ages

through puzzles and quizzes. Table 2 shows how the teachers ex-

plained the PRADA elements, providing good examples and activi-

ties in all cases except for abstraction.

5.2 English/Language Arts Exemplar:

Historical Game
In our second exemplar for 6th grade English Language Arts, teach-

ers created a historical role-playing game to provide context for

students’ reading of narrative and expository texts. Table 3 shows

how this team was able to identify and apply all four PRADA ele-

ments in their learning segment and identified student learning for

patterns, abstraction, and decomposition.

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

910

Table 2: PRADA in the interdisciplinary product

Pattern Rec.: “Students should identify the repetition in

games, the progression of the timeline, characters, puzzle

patterns, and the patterns in graph plotting".

Abstraction: Students would demonstrate abstraction through

“overarching knowledge of the middle ages." This suggests that
the teachers either consider the knowledge to be abstractions, or
they did not understand abstraction enough to provide concrete
examples.

Decomposition: Students should “research events and note
dates in the timeline, discover specific characteristics from the

prologue of the game, break down the logical components in

the puzzle games, and so forth".

Algorithms: Students would design algorithms to “code the
different parts of the game and create a storyboard".

Table 3: PRADA in the humanities product

Pattern Rec.: During their explorations of the world, the

teachers task students with recognizing the “repetition in

history, storytelling, coding" when clicking on similar items.

Abstraction: “Understand history inspiring fiction" This
demonstrates a good disciplinary use of the concept of abstraction,
drawing parallels between history and stories.

Decomposition: Students should “break down plot diagrams
into subcategories and look further into what blocks go into a

specific abstraction". This implies a good understanding of our
CT definitions of decomposition and abstraction (naming a
functional group of blocks) and the attempt to connect
decomposition to abstraction.

Algorithms: In their Snap! file, teachers used multiple sprites

to handle different functionalities, reused code in different

sprite objects, and correctly coordinated the logic and timing

between the sprites, demonstrating impressive understanding.

Teachers did not specify student activities for algorithms.

5.3 Science Exemplar: Rock & Mineral Quiz
The science exemplar, Rock & Mineral Quiz, was developed for

students in 6th - 10th grade science classes to review and practice

knowledge learned about the components of rocks and minerals

in rock cycles. The first Snap! project created by the teachers was

designed to monitor and evaluate students’ ability to respond to

questions related to rocks and minerals throughout a class period.

The other project is intended to be used in a exploratory lab activity,

where the students measure different properties of rock specimens

and input the measurements into the Snap! project to check whether

they made correct inferences. The project files demonstrate a clear

understanding of pattern recognition and decomposition through

the reuse of code segments and use of multiple sprites and control

structures to handle different logic. There is no clear indicator of

abstraction in either of the project files. Table 4 shows the break-

down of PRADA elements listed for this group. We felt that the

listed elements for Decomposition and Algorithms may need to be

reversed, but they could be appropriate depending on how they are

carried out and discussed in classrooms.

Table 4: PRADA in the science product

Pattern Rec.: Students should “recognize the composition of

rocks throughout the rock cycle" (science) and “recognize

patterns in the coding language and how to incorporate loops"

(coding).

Abstraction: Students should identify global and local

properties (science) and code them as global and local variables
in Snap! (coding).

Decomposition: Students should “break down the

composition of minerals by characterizing density, hardness,

and strength" (science) and “will complete sorting activities to

learn where command blocks are located" (coding).

Algorithms: Students investigate “the rock cycle in a series of

labs and activities" (science) and “break down the previously

written code for a review game in Snap! by replacing lines of

code with different questions" (coding).

5.4 Math Exemplar: ACT Football
Our exemplar math product is an ACT practice quiz football game.

Each question is associated with a number of yards that will advance

their team if answered correctly, or penalize their team if answered

incorrectly. The teachers described two ways of using the game:

as a practice for the ACT test and as a way of having the students

learn CT and coding skills. Table 5 demonstrates the use of PRADA

by this team.

Table 5: PRADA in the math product

Pattern Rec.: Students will be “questioned on pattern
recognition as they play, such as:‘what does the game do when

a correct answer is given? A wrong answer?’" They expect the

students to be able to notice the repetitive patterns in the game

and familiarize themselves with the game mechanics.

Abstraction: Teachers will “display a [custom] block and

explain [how it is] considered an abstraction" that is “composed

of an algorithm".

Decomposition: In the Snap! project, teachers demonstrated

understanding of decomposition by creating custom blocks

named “coin toss", “initial possession", and “play" Teachers did
not specify how students would practice or demonstrate
decomposition.

Algorithms: Students will “use an algorithm to decide what
level of questions they want to answer which will determine

their advancement in the football game". Later, the students will

be asked to “use an algorithm to create a block of code that will

ask a question and respond to the answer as to whether correct

or incorrect", which is an algorithm the teachers crafted in the

“play" block in their Snap! project.

6 ANALYSIS OF TEACHER FEEDBACK
The analysis of teacher post-PD surveys demonstrates tha PRADA

was warmly received. In both PDs, respondents showed a high

level of willingness to adopt PRADA and high self-efficacy in being

able to design and teach using PRADA. Table 6 shows the average

response for Likert-style questions participants received.

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

911

Table 6: Average rating for teacher Self-Efficacy (1 strongly
disagree to 5 strongly agree)

 PD1 PD2

7 DISCUSSION & CONCLUSIONS
Unlike other coding-focused CT models, PRADA is an abstraction

of the mindset that is commonly used by computer scientists and

I am more likely to incorporate PRADA activities 4.59 4.55

in my classroom.

programmers when solving problems. We emphasize the word

mindset because PRADA is a thinking process, not bounded by

I can more effectively design PRADA activities. 4.43 4.40 content area or tools, to help people solve problems in a systematic

I can better engage students in making sense of 4.46 4.40 and generalizable way. When helping teachers make connections

 PRADA and designing solutions to problems.

Our analysis of teachers’ daily reflections and interviews reveals

that PRADA seemed to be well-received because its elements con-

nected easily with already established concepts in the teachers’

disciplines. For example, as one teacher notes, “Abstraction for

math is basically modeling - I do it every day!". As they established

connections between CT and existing curricula, teachers began to

understand that they already engage in computational thinking

(“in math, we use abstractions all the time"), but they now had the

toolkit to be able to express these ideas using CT language. As one

teacher put it, “The introduction of the terminology of PRADA

was helpful, as teachers realized that they are already doing this."

Another said, “... I really do this within my teaching already. I just

need to share with students this terminology in science class."

Teachers were also able to identify CT in their colleagues’ learn-

ing segments. For instance, as one teacher noted in their feedback

to a colleague, “I love that [students] can do a creative model of

their physical quilt that models computational thinking." Another

teacher focused specifically on the disciplinary elements of calculus

that mirrored PRADA: “It is interesting that calculus in and of itself

is representative of computational thinking. It’s very “meta" that

the students are creating a program to better understand multiple

representations while they are simultaneously gaining a deeper

understanding of PRADA concepts that are mirrored in calculus

concepts."

However, while teachers had success in both identifying and cre-

ating connections with PRADA elements, some confusion existed

in how to teach these elements within a classroom. As one teacher

put it: “HOW do you teach abstraction? I can recognize it, but what

are ways that I can emphasize it, and have my students value ab-

straction?" This was further compounded with some teachers still

having confusion over to what degree they needed to incorporate

programming into their teaching of CT (“Are we expected to have

the students code, or, is that just an option?").

A few teacher products did not explicitly relate PRADA elements

to their disciplines, but only indicated how PRADA relates to coding.

This may reflect a potential lack of understanding of PRADA as a

connector between CT and disciplines; as one teacher said, “PRADA

helps me work in coding in my classroom". However, this may also

simply be a limitation of our data collection instrument which

only provided small text boxes for explaining how their products

related to PRADA. In our 3C model of Code, Connect, Create [15] for

integrated CT professional development, teachers attended sessions

on learning to code, to connect PRADA to their disciplines, and

to create their learning segments for the classroom. Teachers may

have been eager to demonstrate their understanding of PRADA in

the context of coding, rather than in their own disciplines.

to their disciplinary areas, we have found that while STEM areas

have natural connections to CT through activities like modeling,

simulations and experimental methods (e.g., NGSS), other areas

like English Language Arts can also benefit from applying and

recognizing CT. However, before a teacher can map the PRADA el-

ements to their curriculum, they need to learn to recognize PRADA

elements within their discipline and see examples of how PRADA el-

ements can be introduced. We believe that our approach to helping

teachers learn about CT and how to integrate it into their class-

rooms provided them with opportunities to discover and elaborate

on PRADA elements and to design their own learning segments

with the assistance of computing experts. Teachers could enforce

a long-term conversation about CT by identifying places in their

existing curriculum where students are struggling and looking for

opportunities to integrate CT and coding to help students learning.

Furthermore, we hypothesize that the PRADA model could also

help teachers realize how the CT mindset can be used across disci-

plines to develop generalized problem-solving skills and disposi-

tions. Research shows that interdisciplinary lessons give students

the opportunity to apply knowledge from different areas in problem

solving [14]. As our findings demonstrate, interdisciplinary teacher

teams can mix and match PRADA elements from different content

areas, which mitigates the concern that some PRADA elements

might be hard to identify or explain in certain content areas. In

addition, PRADA can help generalize CT across disciplines, pro-

viding students with a more tangible model with which to make

sense of the problem-solving process and other CT approaches.

While we have shown that teachers are successful at developing

interdisciplinary lessons through PRADA, research into their peda-

gogical effects in classroom environments is still needed. Though

our research team has developed and helped teachers implement

CT lesson using the PRADA model[6], the broader potential impact

of PRADA can only be fully realized when teachers can understand

CT and implement effective CT-integrated lesson plans themselves.

In conclusion, this paper proposed and demonstrated how PRADA

can be used to help K-12 teachers develop an understanding of Com-

putational Thinking and how to integrate it into their disciplinary

courses. We argue that PRADA is a CT model that can be easily

understood by teachers, even those with little to no experience with

programming or computer science. While the elements of CT are

not novel, the way in which they were integrated into the teacher

PD and the way teachers were asked to integrate them into their

classrooms is novel. In the future, we will further investigate the

impact of this promising PRADA model for supporting teachers in

integrating CT into K12 classrooms.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under grant numbers 1742351 and 1742332.

Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

912

REFERENCES
[1] Alfred V Aho. 2011. Ubiquity symposium: Computation and computational

thinking. Ubiquity 2011, January (2011), 1.
[2] Charoula Angeli, Joke Voogt, Andrew Fluck, Mary Webb, Margaret Cox, Joyce

Malyn-Smith, and Jason Zagami. 2016. A K-6 computational thinking curricu-

lum framework: Implications for teacher knowledge. Journal of Educational
Technology & Society 19, 3 (2016).

[3] Deborah Loewenberg Ball. 2000. Bridging practices: Intertwining content and

pedagogy in teaching and learning to teach. Journal of teacher education 51, 3
(2000), 241–247.

[4] Valerie Barr and Chris Stephenson. 2011. Bringing Computational Thinking to
K-12: What is Involved and What is the Role of the Computer Science Education

Community? ACM Inroads 2, 1 (Feb. 2011), 48–54. https://doi.org/10.1145/

1929887.1929905

[5] Matt Bower, Leigh N Wood, Jennifer WM Lai, Cathie Howe, Raymond Lister, Raina

Mason, Kate Highfield, and Jennifer Veal. 2017. Improving the computational

thinking pedagogical capabilities of school teachers. Australian Journal of Teacher
Education 42, 3 (2017), 4.

[6] Veronica Cateté, Nicholas Lytle, Yihuan Dong, Danielle Boulden, Bita Akram,
Jennifer Houchins, Tiffany Barnes, Eric Wiebe, James Lester, Bradford Mott, and

Kristy Boyer. 2018. Infusing Computational Thinking into Middle Grade Science

Classrooms: Lessons Learned. In Proceedings of the 13th Workshop on Primary
and Secondary Computing Education (WiPSCE ’18). ACM, New York, NY, USA.

https://doi.org/10.1145/3265757.3265778

[7] National Research Council et al. 2010. Report of a workshop on the scope and
nature of computational thinking. National Academies Press.

[8] Barbara A Crawford. 2007. Learning to teach science as inquiry in the rough and

tumble of practice. Journal of research in science teaching 44, 4 (2007), 613–642.

[9] International Society for Technology in Education (ISTE), Computer Science

Teachers Association CSTA), et al. 2011. Operational definition of computational

thinking for K-12 Education. online.

[10] Google. 2018. What is Computational Thinking? https:

//computationalthinkingcourse.withgoogle.com/unit?lesson=8&unit=1
[11] Cynthia L Greenleaf, Cindy Litman, Thomas L Hanson, Rachel Rosen, Christy K

Boscardin, Joan Herman, Steven A Schneider, Sarah Madden, and Barbara Jones.

2011. Integrating literacy and science in biology: Teaching and learning impacts of

reading apprenticeship professional development. American Educational Research
Journal 48, 3 (2011), 647–717.

[12] Shuchi Grover and Roy Pea. 2013. Computational thinking in K–12: A review of

the state of the field. Educational Researcher 42, 1 (2013), 38–43.

[13] Maya Israel, Jamie N Pearson, Tanya Tapia, Quentin M Wherfel, and George

Reese. 2015. Supporting all learners in school-wide computational thinking: A

cross-case qualitative analysis. Computers & Education 82 (2015), 263–279.

[14] Leslie Jarmon, Tomoko Traphagan, Michael Mayrath, and Avani Trivedi. 2009.
Virtual world teaching, experiential learning, and assessment: An interdisci-

plinary communication course in Second Life. Computers & Education 53, 1

(2009), 169–182.

[15] Robin Jocius, Yihuan Dong, Deepti Joshi, Richard Robinson, Tiffany Barnes,

Veronica Catete, Jennifer Albert, Ashley Andrews, and Nick Lytle. under review.

Code, Connect, Create: The 3C Professional Development Model to Support

Computational Thinking Infusion. Computer Science Education (under review).

[16] K12cs.org. 2018. Computational Thinking. https://k12cs.org/

computational-thinking/

[17] Jane Margolis. 2010. Stuck in the shallow end: Education, race, and computing.

MIT Press.

[18] Sharan B Merriam. 1988. Case study research in education: A qualitative approach.
Jossey-Bass.

[19] Phil Sands, Aman Yadav, and Jon Good. 2018. Computational Thinking in K-12:

In-service Teacher Perceptions of Computational Thinking. In Computational
Thinking in the STEM Disciplines. Springer, 151–164.

[20] Anselm Strauss and Juliet M Corbin. 1990. Basics of qualitative research: Grounded
theory procedures and techniques. Sage Publications, Inc.

[21] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura
Trouille, and Uri Wilensky. 2014. Defining computational thinking for science,

technology, engineering, and math. In American Educational Research Association
Annual Meeting, Philadelphia, Pennsylvania.

[22] David Weintrop, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura

Trouille, and Uri Wilensky. 2016. Defining computational thinking for mathe-

matics and science classrooms. Journal of Science Education and Technology 25, 1

(2016), 127–147.

[23] Stephen Wilson. 1977. The use of ethnographic techniques in educational re-

search. Review of educational research 47, 2 (1977), 245–265.

[24] J Wing. 2011. Research notebook: Computational thinkingâĂŤWhat and why?

The Link Magazine, Spring.

[25] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),

33–35.

[26] Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil Sands. 2016. Expanding

computer science education in schools: understanding teacher experiences and

challenges. Computer Science Education 26, 4 (2016), 235–254.

[27] Aman Yadav, Hai Hong, and Chris Stephenson. 2016. Computational thinking

for all: pedagogical approaches to embedding 21st century problem solving in

K-12 classrooms. TechTrends 60, 6 (2016), 565–568.

https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/3265757.3265778
https://computationalthinkingcourse.withgoogle.com/unit?lesson=8&unit=1
https://computationalthinkingcourse.withgoogle.com/unit?lesson=8&unit=1
https://k12cs.org/computational-thinking/
https://k12cs.org/computational-thinking/
https://k12cs.org/computational-thinking/

